District Cooling for Honolulu's CBD --Then and Now--

Agenda

- The demand for cooling
- **♦**Response(s) To-date
- What is district cooling?
- Development to date
- Benefits
- Next Steps

The Cooling Opportunity

- Many chillers are at the end of their useful life
- Clean Air Act banned the manufacture of CFCs
- Additional regulations are on the way
- Hard to find capital for non-core business investments

Possible Solutions

- **V**Stockpile CFCs, do nothing
- **VRebuild chillers for**use with other refrigerants
- **VReplace chillers and refrigerants**
- **↑**Outsource cooling requirements!

Stockpile CFCs

- Stockpile CFCs-
 - Hedges against cost increases
 - Entails additional risk
- Wait for a better answer
- Replace/rebuild costs increase
- Regulations/fines increase

The Demand for Cooling

- Air conditioning
- Process cooling
 - Computers
 - Communications
- Refrigeration
 - Walk-in coolers
 - Cold storage

Rebuild Chillers

- Rebuild chillers/replace refrigerants
- A "retrofit"-technically difficult
- Probable capacity reduction
- Limited life, unknown problems ahead
- Risky refrigerant choices
- Capital used for non-core cost center
- Can be expensive!

Replace Chillers

- Difficult to remove and install
- Complex, difficult to manage project
- Replace chillers and refrigerants
- Risky refrigerant choices
- Capital used for non-core cost center
- Can be very expensive!

Outsource Cooling

- Eliminates building cooling plant-
 - Capital requirements
 - Operating and maintenance concerns
 - Environmental risk
- Allows greater focus on core business!

What is District Cooling?

What is District Cooling?

- Centrally-supplied chilled water
 - Available 24 hours/day, 365 days/year
 - Totally meets building owner needs
- Environmentally sound solution
 - Eliminates building cooling plant CFCs, emissions, noise, plume
 - Reduces ozone depletion and global warming
 - Improves cooling efficiency
- Easy Building Syndrome!!

What is District Cooling?

- Reliable service
 - Proven, dependable technology
 - Interruptions virtually non-existent
 - 40 North American commercial systems
 - 2000 North American institutional systems
 - Also in Europe and Asia
- Growth industry
 - Growth rate of at least 15% annually
 - Most growth since 1990
- Catalyst for economic development
 - More competitive CBD
 - Bring jobs to the CBD

District Cooling Development Options

- Utilities
 - Electric
 - Gas
- Municipalities
 - Municipal utilities
 - Not-for-profit development companies
- Independents
 - Entrepreneurial energy companies
 - Customer cooperatives
- Hybrids of above

Responses To-date in 40+ North American Cities (so far)

- Educate & Energize Community leadershippublic & private sectors!
- Decide to meet customer needs by establishing a District Cooling service
- Initiate process to begin operations in about

14-18 months

Initially focus on the downtown areas

Community Leadership

- Got to have it!!
- Has come from public and private sectors
- Based on what's good for the community
- Sees the economic development benefits
- Often easier to educate than to energize

Customer Needs

- A lot more than just air conditioning!!
- Eliminate and contain capital costs
- Reduce surprises & increase reliability
- Make building easier to own & operate
- Get cooling where needed, when needed
 - 24/7 operation
 - Special events
 - 1sk Management Risk Management After hours cooling
 - Data centers

Operating in 14-18 Months??

- After anchor customers signed up!!
- ♦ If you build it, they will come works in the movies—No "Field of Dreams"
- Process includes
 - Business appreciation study
 - Technical & financial feasibility
 - Service agreement terms
 - Customer discussions, customer discussions,& concurrence

Initial Focus

- Downtown areas, Honolulu CBD
- Actually, Campus Areas
 - Educational
 - Health Care

Project Description

- Four parts-a target market area, sources of chilled water, distribution network, and connections to customers' buildings
- Target Markets-Central Business Districts, educational and health care campuses
- Sources-chilled water plants, selected customer equipment, thermal storage, deep lakes, oceans
- Distribution Network-buried pipes: steel, ductile iron, HDPE
- Connections-heat exchangers, metering and controls installed in customers' buildings

Potential Area for District Cooling

HONOLULU PHASING

Chilled Water Sources

- Initial phase with expansion of selected existing chilled water plant(s)
- Expansion to new plant with large, efficient, industrial-grade chillers with thermal storage (ice), or
- Expansion to chilled water storage tank, or
- Expansion to ocean water based cooling, or
- Creative combinations

Chilled Water Plants

- ◆25,000 ton CHW plant
 - 7,000 tons from ice
 - 18,000 tons from mechanical cooling
- State and Adams St., Chicago, IL
- Subsidiary of Unicom Corporation

Chilled Water Plants

- *20,000 ton CHW plant
 - 5,000 tons from ice
 - 15,000 tons from mechanical cooling
- 15th and Glenarm, Denver, CO
- **♦** Public Service Co. of Colorado

Chilled Water Plants

- **♦32,000 ton plant**
 - •52,000 t-hrs of storage
 - •20,000 tons of chillers
- •600 car parking
- **♦8MWe stand-by**
- Medical Center
- Entergy-New Orleans

PRELIMINARY PLANT GENERAL ARRANGEMENT

Commercial Deep Water Cooling

- Cornell University fresh water lake
- Enwave Toronto fresh water lake
- Stockholm Baltic Sea plus heat pumps
- Sollentuna -- sea water plus aquifer storage
- Uppsala Väsby deep water plus heat pump
- ♦ Nacka Strand sea water
- ♦ Norrenergi sea water

Telgi Energi – Södertälje, Sweden

- Cold water from Lake M\u00e4laren provides cooling to a large pharmaceutical plant and other commercial customers
- Production capacity 17,000 tons
- Supply temperature less than 48F all year long
- Source depth 148 ft
- Supply flow rate 26,400 gpm
- District cooling distribution 3.7 miles of 39 inch diameter polyethylene pipe

Pipe installation in Lake Mälaren

Sea Water Cooling in Stockholm

Distribution Network

- Closed system-water supplied is recycled and closely monitored for quality and quantity
- Two buried pipes-supply and return
- Piping material depends on subsurface conditions
- Chilled water supply is at 34-40°F, return at 50-54°F
- Includes conduits for communications

Typical Trench Detail for Chilled Water Pipes in City Streets

Distribution System

- Typical distribution installation
- Public ServiceCompany ofColorado, Denver
- **♦24" Epoxy-coated** welded steel pipe

Customer Connections

- Eliminated-building chillers, cooling towers and refrigerants
- Installed-heat exchangers, piping, controls and metering
- Operations-clean, quiet, environmentally safe and easy
- Reliability-proven equipment, fewer moving parts

Connections

- Typical connection in Chicago
- * 30 story building, 850 ton peak cooling load.
- Two heat exchangers, piping, valves, controls
- Clean, quiet, zero emissions

Connections

Energy Transfer Station (Plate and Frame HX)

- Easily increase capacity by adding plates
- Building and District Cooling water are separated
- Control systems set for desired temperatures

TYPICAL INDIRECT INTERCONNECTION SCHEMATIC

- No capital risk to replace or rebuild
- No operating risk to operate and maintain a plant
 - Maintenance and repairs
 - Chemicals
 - Water

- Insurance and taxes
- Labor
- Security
- maintain a plant No refrigerant risk
 - Selection
 - Disclosure
 - Storage
 - Handling

- Improves cooling performance
 - Quick response
 - Cool down following
 a hot weekend
 - Abrupt changes in temperature
 - Available 24 hrs per day, 365 days per year

- Improves comfort in previously hard to cool spaces
- Opportunity to decrease building energy use
- After hours cooling easier and more economical

- Improves reliability
 - Multiple industrialgrade chillers
 - High reliability design
 - Machines and storage
 - Distribution network

- Eliminates environmental concerns
 - Refrigerants, water treatment chemicals
 - Noise, vibration, health and safety issues
 - Water use
 - Wastewater discharges

- Releases space for more productive uses
- Increases security by reducing service vendors and vehicles
- Easier building to own, operate and maintain
- More predictable financially, operationally
- Allows focus on core business!

Ultimate Development

City of Honolulu Benefits

- Supports economic development
 - Adds new infrastructure and business to the CBD
 - New projects no longer need cooling plants
 - Renovations can focus \$\$ on competitiveness
 - Local construction jobs
 - Long-term district cooling employment

City of Honolulu Benefits

- Adds new opportunities-
 - Thermal storage to reduce electric demand and \$\$
 - Ocean water as renewable energy source
 - Conservation of freshwater

- *♦Eliminates-*
 - Deteriorated cooling towers
 - Aged chillers
 - Stress on local electric utility distribution system

Summary

- District Cooling is...
 - A proven way to cool educational, health care, industrial and urban campuses
 - A flexible system that works well with thermal storage and sea water for AC
 - A financial, operational and environmental risk management strategy

Summary

District Cooling is...

Good for the end-users

Good for Honolulu

Good for Hawaii

District Cooling for Honolulu

—Tomorrow??—

Why Ice Storage?

- Reduces investment costs
 - Smaller distribution pipes
 - Smaller connection equipment
- Shifts some cooling to off-peak
- Provides low temperature CHW
- An extra measure of redundancy
- Makes sense to the public!

City of Honolulu Benefits

- ♠ Improves environmental compliance
 - Large, efficient, industrial-grade chillers
 - Refrigerantsminimum ODP and GWP

- Minimum noise and plume production
- Experienced staff dedicated to CHW production

Summary

- Good for customers!
 - Satisfies a need
 - Eliminates environmental concerns
 - Improves cooling

- Good for the city!
 - Supports economic development
 - Beautifies the city
 - Improves the environment

Pump station installed on rock in shallow water in Lake Mälaren

Distribution System-typical

Sollentuna Energi – Sollentuna, Sweden

- Production capacity 1,100 tons
- Aquifer storage capacity 730,000 ton-hrs
 - Supply temperature 45F
 - Source depth 50 feet
- Pipe materials
 - Polyethylene for pipe installed in the bay
 - Carbon steel for underground pipe
 - Stainless steel for customer connections

Integration of Deep Water Cooling and Seasonal Aquifer Storage -- Sollentuna

